
PxPlus
Version 5.00

C-Library
File IO Routines

Introduction 3

PVK_AllocEnv() 5

PVK_DeAllocEnv() 5

PVSetEnvMode() 5

PVGetEnvMode() 7

PVK_OpenExt() 8

PVK_close() 10

PVK_read() 10

PVK_seek() 11

PVK_write() 11

PVK_insert() 12

PVK_update() 12

PVK_remove() 13

PVK_getpos() 13

PVK_setpos() 14

PVK_geterrno() 15

PVK_strerr() 16

PVK_dict() 17

PVK_deffh() 17

PVK_register() 18

PVK_RegisterKey() 18

Example 19

PxPlus

PxPlus is a trademark of PVX Plus Technologies Ltd.

All other products referred to in this document are trademarks or registered trademarks of their
respective trademark holders.

©2011 PVX Plus Technologies Ltd. — Printed in Canada

4261 Hwy #7 East, Unit A14, Suite 364, Unionville, ON, Canada, L3R 9W6

All rights reserved. Reproduction in whole or in part without permission is prohibited.

The capabilities, system requirements and/or compatibility with third-party products described herein
are subject to change without notice. Refer to the PVX Plus website www.pvxplus.com for

current information.

Publication Release: V5.00

PxPlus V5 3

File IO Routines

The PxPlus C-Library is an add-on interface that enables PxPlus Keyed, Indexed, and EFF files to
be accessed by programs written in 'C' and other programming languages. It consists of the
following file IO functions:

PVK_AllocEnv() Allocate Environment

PVK_DeAllocEnv() De-allocate Environment

PVSetEnvMode() Set Environment Variables

PVGetEnvMode() Get Environment Variables

PVK_open() File Open (Obsolete)

PVK_openEx() Extended File Open (Obsolete)

PVK_OpenExt() Extented File Open

PVK_close() File Close

PVK_read() Read a Record from a File

PVK_seek() Position within Keyed/Indexed File

PVK_write() Write/Rewrite a Record

PVK_insert() Write a New Record

PVK_update() Update an Existing Record

PVK_remove() Remove a Record

PVK_getpos() Get Address/Position within File

PVK_setpos() Set Address/Position of File

PVK_geterrno() Return Last Error Status

PVK_strerr() Return Last Error Message

PVK_dict() Read Dictionary

PVK_deffh() Pointer to Internal Structure Block

PVK_register() File Open (Obsolete)

PVK_RegisterKey() Register Usage of Library

In addition to the above functions, two 'C' header files are provided:

PVKIO.H - contains file structures and function prototypes
SYBEX.H - contains computer word size definitions and macros.

C-Library File IO Routines

PxPlus V5 4

Environments Provided

These functions have been pre-compiled for the 32-bit and 64-bit Windows

environment.

Registration

Use and distribution of this package is prohibited without first obtaining an
authorized registration key. A warning message to this effect is presented whenever
a file is opened unless the application first invokes the PVK_RegisterKey() function
with a valid registration string and registration number.

Distribution of the PXPIO routines is restricted to only those companies that apply
for and receive a registration string and number directly from PVX Plus Technologies
Ltd.

C-Library File IO Routines

PxPlus V5 5

PVK_AllocEnv() Allocate Environment

Format HPVKENV PVK_AllocEnv();

Where:

HPVKENV Handle to the environment structure, 4-byte value. Returns null on
failure.

Description PVK_AllocEnv() is used to allocate the environment. The environment handle must
be passed to the following functions in order to provide thread-safety of PXPIO
operations; PVK_RegisterKey(), PVK_OpenExt(), PVSetEnvMode(),
PVGetEnvMode(). The environment handle must be freed at the end of the session
to avoid resource leaks.

Warning: Attempting to pass a bad or invalid environment handle to any PXPIO
function can cause unpredicable results that may lead to abnormal termination.

PVK_DeAllocEnv() Free Environment

Format void PVK_DeAllocEnv(HPVKENV hEnv);

Where:

hEnv Handle to environment structure.

Description PVK_DeAllocEnv() is used to de-allocate the environment.

PVSetEnvMode() Set Environment Variables

Format intptr_t APIDEF PVSetEnvMode(HPVKENV hEnv, int iFlag, intptr_t iValue);

Where:

hEnv Handle to environment structure.

C-Library File IO Routines

PxPlus V5 6

iFlag Selector of the environment variable to be modified. Can be one of the
following constants:

 PV_BURST_MODE 1
 PV_DIRTY_READ 2
 PV_LOCK_MODE 3
 PV_READ_ONLY 4
 PV_MAX_MB 5

iValue Corresponding value for iFlag:

 PVK_BURST_ON 1

 PVK_BURST_OFF 0

 PVK_DIRTY_ON 1

 PVK_DIRTY_OFF 0

PVK_DONT_CHECK_LOCK 1 (Don't check, never lock read records)
PVK_CHECK_LOCK 2 (Check for extracted records)
PVK_CHECK_LOCK_NOWAIT 4 (Check for extracted records, exit if locked)
PVK_HDR_LOCK_NOWAIT 8 (Don't wait for a locked header)

PVK_READONLY_ON 1

PVK_READONLY_OFF 0

PV_MAX_MB (Maximum size of file segment in MB, integer value 0 to 2000)

Description PVK_SetEnvMode() is used to set the value of environment variables. If successful,
the function returns the previous value of the modified environment variable. If
specified and iValue is not valid, ERR_BAD_TYPE(-5) is returned. Returns
PV_ERROR(-1) on failure.

Additional

Notes
PV_BURST_MODE:

• Normal processing of a file involves locking each area of the file as it is read.
Activating burst mode greatly reduces the number of locks issued against a file.
With Burst mode set, the PXPIO routines lock the file header for either 50 file
operations or three-tenths of a second, whichever occurs first. This decreases the
number of times the file must be locked, and the number of times that internal
buffers may need to be reloaded.

PV_DIRTY_READ:

• Dirty Read mode of operation skips the normal file consistency checks. Dirty reads
can speed file processing by reducing the number of locks issued against a file.
However this may result in inconsistent data should the file be updated while
being read by the PXPIO routines.

PV_LOCK_MODE:

C-Library File IO Routines

PxPlus V5 7

• The Lock Mode is used to control whether to check for locked / extracted records
when reading and writing. The default setting is to not check for locked records
for backwards compatibility with older versions of the PXPIO routines.

• Note: This flag should normally be set to PVK_CHECK_LOCK when files are
being updated concurrently by PxPlus and applications using the PXPIO routines.
A setting of PVK_DONT_CHECK_LOCK will allow the PXPIO routines to read
and write a record that is extracted in PxPlus. The remaining settings provide a
quicker means of checking for a locked record or file header and will return
immediately rather than retrying the lock.

PV_MAX_MB:

• The PV_MAX_MB setting is used to control the approximate size of a file in mega
bytes before additional segments are created. This setting is functionally equivalent
to the 'MB' (Mega-Bytes) system parameter in PxPlus. Values for PV_MAX_MB
must be in the range of zero (0) to two thousand (2000). The default is two
thousand (2000). Specifying a value of zero (0) resets this parameter to its default.

PVGetEnvMode() Get Environment Variables

Format intptr_t APIDEF PVGetEnvMode(HPVKENV hEnv, int iFlag);

Where:

hEnv Handle to environment structure.

iFlag Selector of the environment variable to retrieve the value.

Description PVK_GetEnvMode() is used to get the value of the environment variable. If
successful, the function returns the value of the environment variable specified by
iFlag. Returns PV_ERROR(-1) on failure.

PVK_open() File Open (Obsolete)

Description Obsolete. Supported for backwards compatibility only. Refer to the PVK_OpenExt()

function.

C-Library File IO Routines

PxPlus V5 8

PVK_openEx() Extended File Open (Obsolete)

Description Obsolete. Supported for backwards compatibility only. Refer to the PVK_OpenExt()

function.

PVK_OpenExt() Extended File Open

Format int PVK_OpenExt(HPVKENV hEnv, char *path, char *pswd, int pswd_sz, INT16 opt,

INT32 *open_err);

Where:

hEnv Handle to environment structure created by PVK_AllocEnv().

path Pointer to a null terminated string containing the pathname of the
keyed/direct/indexed/view file to open.

pswd Pointer to a buffer that contains the optional password required to
access a keyed or direct file.

pswd_sz Indicates the length of the pswd buffer.

opt Indicates whether a file should be opened in read-only mode
(Windows or UNIX) or for exclusive use (Windows Only).

open_err Error code (see error code values below).

Description PVK_OpenExt() is used to open a PxPlus keyed/direct/indexed/EFF files or Views
which requires a password or extended options. It will return the logical file handle
for the file provided it can be opened. All subsequent file I/O calls to PXPIO
functions must specify the returned handle.

Valid opt values include WSF_INPUT for read-only and WSF_LOCK for exclusive
mode. A value of -1 is returned if the file cannot be opened.

Opt Table

#define FAM_READONLY 0x0000 /* File in read only mode */

#define FAM_READWRITE 0x0001 /* File in read write mode */

#define WSF_LOCK 0x0400 /* File was opened with exclusive use */

PXPIO Error Codes

#define ERR_OK 0 /* no error */

#define ERR_CANT_OPEN 1

#define ERR_BAD_FH 2

#define ERR_NOSUCH_KEY 3

#define ERR_EOF 4

#define ERR_BAD_TYPE 5

C-Library File IO Routines

PxPlus V5 9

#define ERR_KEYNO 6

#define ERR_KEY_LENGTH 7

#define ERR_NO_MEMORY 8

#define ERR_KIO_OFS 9

#define ERR_KIO_FAILED 10

#define ERR_KIO_WRONG 11

#define ERR_KSZ_WRONG 12

#define ERR_RSZ_WRONG 13

#define ERR_SEEK_FAILED 14

#define ERR_READ_FAILED 15

#define ERR_READ_SHORT 16

#define ERR_BAD_FUNCTION 17

#define ERR_INDEXED_FILE 18

#define ERR_WRITE_FAILED 19

#define ERR_KIO_BADADR 20

#define ERR_KIO_DELCHN 21

#define ERR_KIO_NOEOF 22

#define ERR_BUSY 23 /* File or Data busy */

#define ERR_FILE_FULL 24

#define ERR_NOT_REGISTERED 25

#define ERR_DOM 26 /* Duplicate key not allowed – if

missing Rpt ERR_NO_SUCH_KEY */

#define ERR_KIO_RSIZE 27 /* Keyed file error (Record length

invalid) */

#define ERR_KIO_BADSEG 28 /* Invalid segment number */

#define ERR_IND_HEADER 29 /* Unable to access Indexed file

header */

#define ERR_KIO_DECOMPFAIL 30 /* Decompress of record failed */

#define ERR_PSWD_WRONG 31 /* Wrong password supplied */

#define ERR_BAD_OFFSET 32 /* Bad Read Offset */

#define ERR_NO_SUCH_FILE 33 /* File does not exist (or already

exists) */

#define ERR_RESTRICT_FAILED 34

#define ERR_ACCESS_VLTN 35 /* Access violation, attempt to write

to ReadOnly file */

#define ERR_TX_BEGIN 36 /* Begin transaction without finishing

previous */

#define ERR_TX_ROLLBACK 37 /* Rollback/Commit without proper

Begin transaction */

#define ERR_FILE_BUSY 38 /* File is busy */

#define ERR_MISSING_INFO 39 /* Not enough information passed in */

#define ERR_OBJ_VER_WRONG 40

#define ERR_BAD_BUFFER 41 /* Incorrect buffer returned from

page_get */

#define ERR_SYS_NOFH 42 /* os error: No more file handles

available (too many open files)*/

#define ERR_NET_FAILED 43 /* network error */

#define ERR_VERSION 44

#define ERR_SECURITY_FAILED 45 /* Logon failed */

#define ERR_PVK_NOTSUPPORTED 46 /* Feature is not supported */

C-Library File IO Routines

PxPlus V5 10

PVK_close() File Close

Format int PVK_close(int fh);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

Description PVK_close() closes the file and releases all resources (memory) associated with the
specified file handle.

PVK_read() Read a Record from a File

Format int PVK_read(int fh, char *dtabfr, int dtasz, int function);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

dtabfr Pointer to the data buffer to receive the record data.

dtasz Size (in bytes) of the data buffer.

function Type of read to be performed - values are:
PVKRD_CUR Returns current
PVKRD_NEXT Returns next
PVKRD_PRIOR Returns prior
PVKRD_LOCK OR'ed into function to lock the record
PVKRD_UNLOCK OR'ed into function to unlock all records

Description PVK_read() is used to read a record from a PxPlus Keyed, Indexed, or EFF file. The
return value will contain the length of the record in bytes or -1 if an error occurred. A
return value of -2 indicates that the supplied buffer was not large enough to store the
entire data record.

A record may be locked or extracted by specifying PVKRD_LOCK in conjunction with
the appropriate function (e.g., PVKRD_NEXT | PVKRD_LOCK).

Note: For files with an external key (Direct files) the data returned will consist of the
external key followed by the data.

For example, a Direct file with a 6 character key and an 80 character record size will
return an 86 byte record - characters 1-6 will be the external key padded with nulls
followed by the record data.

C-Library File IO Routines

PxPlus V5 11

PVK_seek() Position within a File

Format int PVK_seek(int fh, char *keybfr, int keysz, int keyno);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

keybfr Pointer to a buffer containing the key.

keysz Size of the key in bytes.

keyno Key number to use (0=Current key, 1=Primary, 2=first alternate, etc.).

Description PVK_seek() is used to position the key pointer to a specified location within a file
for subsequent processing. By default the Key IO routines read using the primary
access key (KEY 1). An alternate key chain may be specified in the keyno parameter.

If keyno is set to 0, the current key is used.

If successful, a status of 0 is returned

PVK_write() Write/Rewrite a Record

Format int PVK_write(int fh, char *dtabfr, int dtasz, char *keybfr, int keysz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

dtabfr Pointer to the data buffer to receive the record data.

dtasz Size of the record in bytes.

keybfr Pointer to a buffer containing the external key, if applicable.

keysz Size of the external key in bytes.

Description PVK_write() is used to write or rewrite a record to a PxPlus keyed, indexed,
or EFF file.

The PVK_insert and PVK_update functions may be used if an application needs to
differentiate between creating new records versus updating existing records.

The data buffer must contain a properly formatted record with the length of the
record specified. The value supplied in dtasz should contain the actual size of the
record rather than the size of the data buffer. PVK_write will pad the data record
with nulls as required for files with fixed length records.

The key buffer and length must contain the necessary key information for a file
with an external key. If no external key is defined for the file then the keysz field
must be set to zero.

The calling application is responsible for constructing a valid PxPlus data record
using field separators as required.

If successful this function will return 0 otherwise it will return -1.

C-Library File IO Routines

PxPlus V5 12

PVK_insert() Write a New Record

Format int PVK_insert(int fh, char *dtabfr, int dtasz, char *keybfr, int keysz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

dtabfr Pointer to the data buffer to receive the record data.

dtasz Size of the record in bytes.

keybfr Pointer to a buffer containing the external key, if applicable.

keysz Size of the external key in bytes.

Description PVK_insert() is used to write a new record into a PxPlus keyed, indexed, or EFF
file. It returns an error if a record with the same key value exists.

The data buffer must contain a properly formatted record with the length of the
record specified. The value supplied in dtasz should contain the actual size of the
record rather than the size of the data buffer. PVK_insert() will pad the data record
with nulls as required for files with fixed length records.

The key buffer and length must contain the necessary key information for a file with
an external key. If no external key is defined for the file then the keysz field must be
set to zero.

The calling application is responsible for constructing a valid PxPlus data record
using field separators as required.

If successful this function will return 0 otherwise it will return -1.

PVK_update() Update an Existing Record

Format int PVK_update(int fh, char *dtabfr, int dtasz, char *keybfr, int keysz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

dtabfr Pointer to the data buffer to receive the record data.

dtasz Size of the record in bytes.

keybfr Pointer to a buffer containing the external key, if applicable.

keysz Size of the external key in bytes.

C-Library File IO Routines

PxPlus V5 13

Description PVK_update() is used to update an existing record in a PxPlus keyed, indexed, or
EFF file. The PVK_update() function will return an error if the record does not
already exist.

The data buffer must contain a properly formatted record with the length of the
record specified. The value supplied in dtasz should contain the actual size of the
record rather than the size of the data buffer. PVK_update will pad the data record
with nulls as required for files with fixed length records.

The key buffer and length must contain the necessary key information for a file with
an external key. If no external key is defined for the file then the keysz field must be
set to zero.

The calling application is responsible for constructing a valid PxPlus data record
using field separators as required.

If successful this function will return 0 otherwise it will return -1.

PVK_remove() Remove a Record

Format int PVK_remove(int fh, char *keybfr, int keysz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

keybfr Pointer to a buffer containing the external key of the record to remove.

keysz Size of the primary key in bytes.

Description PVK_remove() is used to remove a record from a PxPlus keyed file. The length
and value of the primary key for the record must be specified.

Records can only be removed from a file using the primary key. Alternate keys
cannot be used.

This function cannot be used with indexed files.

If successful this function will return 0 otherwise it will return -1.

PVK_getpos() Get Address/Position within File

Format long PVK_getpos(int fh);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

C-Library File IO Routines

PxPlus V5 14

Description PVK_getpos() returns the address of the record associated with the current key
pointer for the specified file handle.

A return value of -1 is returned if the function is unsuccessful.

PVK_setpos() Set Address/Position of File

Format int PVK_setpos(int fh, long addr);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

addr Address/position of the record.

Description PVK_setpos() sets the current record address based on the specified address.

If successful, a status of 0 is returned.

PVK_get_max_mb() Deprecated

Description Deprecated. This has been replaced by the PVGetEnvMode() function with an iFlag

setting of PV_MAX_MB.

PVK_set_max_mb() Deprecated

Description Deprecated. This has been replaced by the PVSetEnvMode() function with an iFlag

setting of PV_MAX_MB.

PVK_CheckLock() Deprecated

Description Deprecated. This has been replaced by the PVGetEnvMode() and PVSetEnvMode(

) functions with an iFlag setting of PV_LOCK_MODE.

C-Library File IO Routines

PxPlus V5 15

PVK_dirty() Deprecated

Description Deprecated. This has been replaced by the PVGetEnvMode() and PVSetEnvMode(

) functions with an iFlag setting of PV_DIRTY_READ.

PVK_burst() Deprecated

Description Deprecated. This has been replaced by the PVGetEnvMode() and PVSetEnvMode(

) functions with an iFlag setting of PV_BURST_MODE.

PVK_geterrno() Return Last Error Status

Format int PVK_geterrno(void);

Description This function returns the last known error status. It will return one of the following

values (see PVKIO.H):

#define ERR_CANT_OPEN 1
#define ERR_BAD_FH 2
#define ERR_NOSUCH_KEY 3
#define ERR_EOF 4
#define ERR_BAD_TYPE 5
#define ERR_KEYNO 6
#define ERR_KEY_LENGTH 7
#define ERR_NO_MEMORY 8
#define ERR_KIO_OFS 9
#define ERR_KIO_FAILED 10
#define ERR_KIO_WRONG 11
#define ERR_KSZ_WRONG 12
#define ERR_RSZ_WRONG 13
#define ERR_SEEK_FAILED 14
#define ERR_READ_FAILED 15
#define ERR_READ_SHORT 16
#define ERR_BAD_FUNCTION 17
#define ERR_INDEXED_FILE 18
#define ERR_WRITE_FAILED 19
#define ERR_KIO_BADADR 20
#define ERR_KIO_DELCHN 21
#define ERR_KIO_NOEOF 22
#define ERR_BUSY 23
#define ERR_FILE_FULL 24
#define ERR_NOT_REGISTERED 25

C-Library File IO Routines

PxPlus V5 16

#define ERR_DOM 26

#define ERR_KIO_RSIZE 27

#define ERR_KIO_BADSEG 28

#define ERR_IND_HEADER 29

#define ERR_KIO_DECOMPFAIL 30

#define ERR_PSWD_WRONG 31

#define ERR_BAD_OFFSET 32

#define ERR_NO_SUCH_FILE 33

#define ERR_RESTRICT_FAILED34

#define ERR_ACCESS_VLTN 35

#define ERR_TX_BEGIN 36

#define ERR_TX_ROLLBACK 37

#define ERR_FILE_BUSY 38

#define ERR_MISSING_INFO 39

#define ERR_OBJ_VER_WRONG 40

PVK_strerr() Return Last Error Message

Format char * PVK_strerr(void);

Description This function returns the text of the current error status. Values are:

"Can't open data file"

"Bad file handle number"

"Invalid key specified"

"End of file reached"

"Bad file type -- Not a KEYED file"

"Key number invalid"

"Length invalid"

"No system memory available"

"File error : Offset error"

"File error : Read of key buffer failed"

"File error : Key header address invalid"

"File error : Key size invalid"

"File error : Record size invalid"

"File error : Seek failed"

"File error : Read failed"

"File error : Truncated read"

"Bad internal function code"

"File type is indexed"

"Write command failed"

"Keyed Io returned bad address"

"Deleted record chain corrupted"

"No EOF marker found in keyed file"

"File header or record busy -- retry later"

C-Library File IO Routines

PxPlus V5 17

"File full" "Registration

Failure" "Duplicate key not

allowed"

"File error : Record length invalid"

"File error : Invalid Segment number"

"Unable to access Indexed file header"

"File error : Decompression failed"

"File error : Password Incorrect"

"Bad record offset"

"File does not exist"

"Unknown operator in restrict routine"

"Access Violation: File is in Read Only mode"

"Begin transaction without ending previous transaction"

"Rollback/Commit without Begin transaction"

"File header is busy -- retry later"

"Required information missing"

"Views object version wrong"

PVK_dict() Read Dictionary

Format int PVK_dict(int fh, int dctidx, char *dctbfr, int dctbsz);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

dctidx Data dictionary entry.

dctbfr Pointer to the data buffer to receive the data dictionary record.

dctbsz Size of the data buffer in bytes.

Description This function can be used to read the embedded data dictionary records held within
a file. The format of the information contained within the data dictionary is subject
to change and as such, is not documented in this reference manual.

PVK_deffh() Pointer to Internal Structure Block

Format struct PVKINF * PVK_deffh (int fh);

Where:

fh File handle returned from a prior call to PVK_OpenExt().

C-Library File IO Routines

PxPlus V5 18

Description This function may be used to obtain a pointer to the internal structures maintained
by PXPIO.

Note: The values contained within this structure should not be modified by an outside
application. Any attempt to do so, may result in file corruption and/or cause the
application to become unstable.

See PVKIO.H for more details on this structure.

If successful, this function will return valid pointer otherwise it will return null.

Warning: Passing a bad or invalid file handle can cause unpredicable results that may
lead to abnormal termination.

PVK_register() Deprecated

Description Deprecated. This has been replaced by the PVK_RegisterKey() function.

PVK_RegisterKey() Register Usage of Library

Format int PVK_RegisterKey(HPVKENV hEnv, char *reg_str, long reg_num);

Where:

hEnv Handle to environment structure created by PVK_AllocEnv().

reg_str Registration string provided by PVX Plus Technologies Ltd.

reg_num Registration number provided by PVX Plus Technologies Ltd.

Description PVK_RegisterKey() must be called prior to opening the first file in order to provide
the DLL with a valid registration string and key. Without this registration
information, a warning message that requires user intervention will be displayed
whenever a file is opened.

The PXPIO routines are not to be redistributed as part of any application without
first having purchased and obtained a proper registration string and number from
PVX Plus Technologies Ltd.

C-Library File IO Routines

PxPlus V5 19

Example

/* sample.c : Sample PXPIO console application*/

#include <stdio.h>
#include <windows.h>

#include "pvkio.h"

int main(int argc, char* argv[])
{

HMODULE hPvkio;
FARPROC PVK_OpenExt, PVK_close, PVK_read, PVK_write, PVK_seek;
FARPROC PVK_AllocEnv, PVK_DeAllocEnv, PVK_RegisterKey;
HPVKENV hEnv;

int fh, keysz, dtasz, i, sts, fc;
char bfr[256], keybfr[4+1], dtabfr[4+256+1], pswd[32];
INT16 opt = 0;
INT32 open_err = 0;

memset(pswd, 0x00, sizeof(pswd));

/* Load the DLL and locate necessary entrypoints */
if ((hPvkio = LoadLibrary("pxpio.dll")) EQ NULL) return -1;

if ((PVK_OpenExt = GetProcAddress(hPvkio, "PVK_OpenExt")) EQ NULL) return -2;

if ((PVK_close = GetProcAddress(hPvkio, "PVK_close")) EQ NULL) return -2;
if ((PVK_read = GetProcAddress(hPvkio, "PVK_read")) EQ NULL) return -2;
if ((PVK_write = GetProcAddress(hPvkio, "PVK_write")) EQ NULL) return -2;
if ((PVK_seek = GetProcAddress(hPvkio, "PVK_seek")) EQ NULL) return -2;
if ((PVK_AllocEnv = GetProcAddress(hPvkio, "PVK_AllocEnv")) EQ NULL) return -2;
if ((PVK_DeAllocEnv = GetProcAddress(hPvkio, "PVK_DeAllocEnv"))EQ NULL) return -2;
if ((PVK_RegisterKey = GetProcAddress(hPvkio, "PVK_RegisterKey"))EQ NULL) return -2;

/* Create a new Environment */
hEnv = (HPVKENV)(*PVK_AllocEnv)();
if (hEnv EQ NULL) return -3;

(*PVK_RegisterKey)(hEnv, "<Insert License Name and Number here>", 12345678L);

fh = (int)((*PVK_OpenExt)(hEnv, "testfile", pswd, sizeof(pswd), opt, &open_err));
if (fh EQ (int)-1) return -4;

/* Insert/Update 10 records */
for(i=1;i<=10;i++)
{

sprintf(keybfr, "%04d", i);
sprintf(dtabfr, "This is record #%d%c", i, 0x8a);

keysz = strlen(keybfr);
dtasz = strlen(dtabfr);

sts = (int)((*PVK_write)(fh, &dtabfr, dtasz, &keybfr, keysz));

sprintf(bfr, "Writing: %s - %s - sts=%d\n", keybfr, dtabfr, sts);
printf(bfr);

}

/* Seek to key 0005 and read until end of file */
sts = (int)((*PVK_seek)(fh, "0005", 4, 1));
fc = PVKRD_CUR;

for(;;)
{

sts = (int)((*PVK_read)(fh, &dtabfr, sizeof(dtabfr), fc));
if (sts EQ -1) break;/* EOF */

dtabfr[sts] = 0;
sprintf(bfr, "Read: %s - sts=%d\n", dtabfr, sts);
printf(bfr);

fc = PVKRD_NEXT;
}

(*PVK_close)(fh);
(*PVK_DeAllocEnv)(hEnv)

; FreeLibrary(hPvkio);

return 0;
}

