
PXPLUS EXTERNAL DATABASE SUPPORT

PXPLUS EXTERNAL DATABASE SUPPORT

• While most aspects of a business application can be served within the PxPlus family of products, today's end users

are often required to work with data that resides in completely different software worlds

• Businesses may need to integrate popular "off-the-shelf" software with their legacy systems, applications and

databases

• PxPlus can work directly with data in a number of External Databases, over networks and on completely different

operating systems

• Any external database with an ODBC driver via [ODB]

• MySQL/MariaDB via [MYSQL]

• Requires MySQL/MariaDB C Connector: libmysql.dll

• Microsoft SQL Server via [ADO]

• Oracle Server via [OCI]

• Requires Oracle instant client: oci.dll

• IBM DB2 via [DB2]

• Requires DB2 CLI client: db2cli.dll

BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/PXPLUS/command_tags/odb.htm
https://manual.pvxplus.com/PXPLUS/command_tags/mysql.htm
https://manual.pvxplus.com/PXPLUS/command_tags/ADO.htm
https://manual.pvxplus.com/PXPLUS/command_tags/oci.htm
https://manual.pvxplus.com/PXPLUS/command_tags/db2.htm

PXPLUS EXTERNAL DATABASE SUPPORT

• An External Database table is accessed via an OPEN directive just like a PxPlus native file

• Use the [xxx] prefix depending on the type of database

• The database connection information and table name are given either after the [xxx] prefix or via OPT=

• Check the documentation of the specific database prefix you want to use for the exact syntax

• For Read-only data that is not too large, dramatically improve performance with OPEN LOAD directive

• Locally caches the whole table in memory

• Controlled system wide via the 'CL'=value system parameter

• All tables with a record count below value will be cached, 0 will disable OPEN LOAD caching, default is 1000

• Individually controlled via OPEN LOAD directive when OPT= clause of CACHE=value is included, overriding 'CL'

• A value of yes means to always cache, no means to never cache, nnn means to cache if record count is less than nnn

BRIDGING THE PAST AND THE FUTURE

open(hfn,iol=*,OPT="SERVER=192.168.1.114;PORT=3306;USER=xxxx;PSWD=xxxxxxx")"[MYSQL]test_db;invoice_header"

open load(hfn,iol=*,OPT="SERVER=192.168.1.114;PORT=3306;USER=xxxx;PSWD=xxxx;cache=yes")"[MYSQL]test_db;invoice_header"

https://manual.pvxplus.com/page/directives/open.htm
https://manual.pvxplus.com/page/directives/open.htm#Mark18
https://manual.pvxplus.com/page/parameters/cl.htm

PREFIX FILE

PREFIX FILE

• Can define a new prefix file entry with the database connection information

• Code can be kept cleaner or be switched from native file to a database without changing code

• The prefix file is a PxPlus native variable length keyed file

• Prefix file entry/record

• The key is the name you want to access your database table by

• The first field will contain the database prefix and the DSN/Table declaration

• The second field will contain the database connection options usually in the OPT=

• The third field may be specified that contains the IOList to use when opening the file with an IOL=* option

BRIDGING THE PAST AND THE FUTURE

KEYED "PFXFILE",127

OPEN (1) "PFXFILE"

WRITE(1,KEY="my_table")"[MYSQL]test_db;my_table;SERVER=192.168.1.114;PORT=3306;USER=xxxx;PSWD=xxxxxxx",

"KEY=field1;REC=field1:10,field2:8.2,field3:40,field4:8,field5:2,field6:20",

"field1$,field2,field3$,field4$,field5,field6$"

CLOSE (1)

PREFIX FILE

• Use the PREFIX FILE directive to start using a prefix file

• Once setup any open using the name key will actually open the database connection defined in the prefix entry

BRIDGING THE PAST AND THE FUTURE

PREFIX FILE "PFXFILE"

OPEN (1,iol=*) "my_table"

https://manual.pvxplus.com/page/directives/prefix.htm#Mark10

LINK FILE

LINK FILE

• Can define a link file with the database connection information

• Code can be kept cleaner or be switched from native file to a database without changing code

• An external database link file is a [Pvxdev] Link File that points to a device driver, *dev/extdb

• Link File Format:

• Line 1: Typical line for a [Pvxdev] link file, pointing to the device driver, *dev/extdb (256 characters)

• Line 2: Database Type

• Line 3: Database Name

• Line 4: Table Name

• Line 5 (and higher): Options

• Any line in the link file (after the first line) that starts with an = (equals sign) will be evaluated

• This can be used to avoid plain text password in the link file

• ="USER="+%adoUser$

• ="PSWD="+%adoPswd$

• The IOL= and OPT= on the OPEN of the link file will be used

• Any OPT= on the OPEN of the link file overrides the OPT= defined in the link file

BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/PXPLUS/PxPlus%20User%20Guide/Printing/Print%20Drivers%20and%20Link%20Files/Overview.htm#Mark2

LINK FILE

• Suppose that you created a link file called "ADOProduct" that defined an ADO connection to the Product table

• OPEN (chan,IOL=*)"ADOProduct"

• This will then make a connection to the external database as defined in the link file

• It would be as if "ADOProduct" was a PxPlus data file to your program even though it is an external database

table

BRIDGING THE PAST AND THE FUTURE

[Pvxdev]. extdb

ADO

ServerName

TableName

DB=databaseName

NONULLS=YES

Connect='Provider=SQLOLEDB;'

EXTROPT=(UPDLOCK)

DATEFMT=YYYYMMDD

KEY=fieldOne,*NAME:KeyOne

KEY=fieldTwo,fieldThree,*NAME:KeyTwo

REC=fieldOne:12,fieldTwo:40,fieldThree:6.2,fieldFour:6.0

USING EXTERNAL DATABASES

USING EXTERNAL DATABASES

• Existing code using native PxPlus files will work without changes

• Queries, Reports, File Maintenance, and Webster+ equivalents will work without changes

• READ, WRITE, INSERT, UPDATE and REMOVE directives will generate the SQL to work with the database

automatically

• Can generate better optimized SQL if the keys are defined to match the tables index fields

 PxPlus Code SQL Code

BRIDGING THE PAST AND THE FUTURE

open (1)"[ODB]MYDB;CUSTOMER"

read record (1)R$
SELECT * FROM CUSTOMER

open (1)"[ODB]MYDB;CUSTOMER;KEY=CST_ID"

read record (1,key= "00420000")R$
SELECT * FROM CUSTOMER WHERE CST_ID = "00420000"

USING EXTERNAL DATABASES

• SELECT, which allows you to use SQL-like syntax in your programs to access native files, also will convert into real

SQL to work with the database automatically

• A WHERE clause in the SELECT directive can optimize the SQL generated

• Only if comparing field variable against literal

• Use STATIC clause to optimize if comparing field variable to a variable

BRIDGING THE PAST AND THE FUTURE

SELECT * FROM "[ODB]MYDB;CUSTOMER"

WHERE State$ = "ON"
SELECT * FROM CUSTOMER WHERE State = 'ON'

SELECT * FROM "[ODB]MYDB;CUSTOMER"

STATIC WHERE State$ = curState$

https://manual.pvxplus.com/page/directives/select.htm#Mark5

USING EXTERNAL DATABASES

• You can enable a debug mode where the SQL commands generated will be displayed via a msgbox

• SET_PARAM '!Q'

• Directly execute SQL on the database

• Use a key="!<SQL>" on a READ directive

• Read Record also supported

• Table name from connection ignored

BRIDGING THE PAST AND THE FUTURE

open (1)"[ODB]MYDB;some_table"

sqlcmd$="SELECT first_name FROM students WHERE student_id IN (SELECT student_id FROM grades WHERE grade = 'A')"

read record (1, key="!"+sqlcmd$) result$

https://manual.pvxplus.com/page/directives/read.htm

USING EXTERNAL DATABASES

• Open a direct connection to the database by not specifying a table name

• If connection kept open can be used to avoid needing login credentials on each database connection

• Can query the following with key=

BRIDGING THE PAST AND THE FUTURE

open (chan)"[ODB]MYDB;"

read (chan, key="?“) tableCatalog$,tableSchema$,TableName$,tableType$,Remarks$

while 1

read (chan, err=*break) tableCatalog$,tableSchema$,TableName$,tableType$,Remarks$

wend

KEY= Action SQL Function

"?" Returns the list of table, catalog, or schema names, and

table types

SQLTables()

"*xxxx" Returns the list of column names in table xxxx SQLColumns()

"**xxxx" Returns a list of statistics about table xxxx and the

indexes associated with the table

SQLStatistics()

https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqltables-function?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlcolumns-function?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlstatistics-function?view=sql-server-ver16

USING EXTERNAL DATABASES

• Open a direct connection to the database by not specifying a table name

• WRITE RECORD directive allows you to execute SQL directly while the READ RECORD directive returns the

results

• Same key="!<SQL>" on a READ directive works here too

BRIDGING THE PAST AND THE FUTURE

open (chan)"[ODB]MYDB"

sqlcmd$="SELECT first_name FROM students WHERE student_id IN (SELECT student_id FROM grades WHERE grade = 'A')"

write record (chan) sqlcmd$

read record (chan) result$

https://manual.pvxplus.com/page/directives/write_record.htm
https://manual.pvxplus.com/page/directives/read_record.htm
https://manual.pvxplus.com/page/directives/read.htm

	Slide 3: PxPlus External Database SUPPORT
	Slide 4: PXPLUS External Database SUPPORT
	Slide 5: PXPLUS External Database SUPPORT
	Slide 6: PREFIX File
	Slide 7: PREFIX FILE
	Slide 8: PREFIX FILE
	Slide 9: Link File
	Slide 10: LINK FILE
	Slide 11: LINK FILE
	Slide 12: USING EXTERNAL DATABASES
	Slide 13: USING EXTERNAL DATABASES
	Slide 14: USING EXTERNAL DATABASES
	Slide 15: USING EXTERNAL DATABASES
	Slide 16: USING EXTERNAL DATABASES
	Slide 17: USING EXTERNAL DATABASES

