
SECURIT Y

DireXions 2024

AGENDA

SSL/TLS

Two-Factor Authentication

OAuth 2.0 Secure Web Services

BRIDGING THE PAST AND THE FUTURE

SSL/TLS

SSL/TLS - OVERVIEW

• What does SSL stand for?

• Secure Socket Layer

• A socket is the technical term for a network connection between machines

• SSL is a layer between the TCP/IP interface and your application

• TLS is the new terminology

• Transport Layer Security

• Removes the reference to “Socket”

• Can (in theory) be used on any communication

BRIDGING THE PAST AND THE FUTURE

SSL/TLS - OVERVIEW
PxPlus will connect with SSL 2.0
and above

This can be controlled

Protocol Published Status

SSL 1.0 Unpublished Unpublished

SSL 2.0 1995 Deprecated in 2011

SSL 3.0 1996 Deprecated in 2015

TLS 1.0 1999 Deprecated in 2021

TLS 1.1 2006 Deprecated in 2021

TLS 1.2 2008 In use since 2008

TLS 1.3 2018 In use since 2018

BRIDGING THE PAST AND THE FUTURE

SSL/TLS - OVERVIEW

• SSL/TLS provides three main services

• Data encryption

• Authentication of the server to the client

• Authentication of the client to the server (less common)

• PxPlus uses the industry standard OpenSSL to provide SSL/TLS support

• On Windows, PxPlus ships with OpenSSL included

• Version is updated with major PxPlus version (Windows)

• On UNIX/Linux, OpenSSL is part of the OS

• Used by [TCP], Simple Client-Server, Email, EZWeb, ODBC, PxServer

• Specify which OpenSSL PxPlus should use by setting the environment variables PXP_CRYPTO_LIB and PXP_SSL_LIB

• It is also possible to query which version of OpenSSL PxPlus is using by issuing a TCB("OpenSSL_Version")

BRIDGING THE PAST AND THE FUTURE

SSL/TLS - DATA ENCRYP TION

Ciphers provide “reversible” encryption

• Data encrypted by “Encryption key” can only be decrypted by “Decryption key”

• Key size and the algorithm determines how secure data is

• Typical key sizes range from 128 to 4096 bits

• 32 bit is over 4 billion thus 4096 is quite large

• Algorithms can be found to be faulty and “leak” answers

No cipher is 100% safe - all can be cracked given enough resources and time

BRIDGING THE PAST AND THE FUTURE

SSL/TLS - DATA ENCRYP TION
SSL/TLS encryption algorithms
(ciphers)

Only use modern and unbroken
ciphers

Method Description

aes Advanced Encryption Standard (AES), also known as Rijndael, adopted as

an encryption standard by the US government.

aria ARIA is a block cipher with a block size of 128 bits and key sizes of 128,

192 and 256 bits. It was designed in 2003 by a large group of South

Korean researchers. In 2004, the Korean Agency for Technology and

Standards selected it as a standard cryptographic technique.

camellia Camellia is a symmetric key block cipher with a block size of 128 bits and

key sizes of 128, 192 and 256 bits. It was jointly developed by Mitsubishi

Electric and NTT of Japan. The cipher has been approved for use by the

ISO/IEC, the European Union's NESSIE project and the Japanese CRYPTREC

project. The cipher has security levels and processing abilities comparable

to the Advanced Encryption Standard.

chacha20 ChaCha20 is a stream cipher developed by Daniel J. Bernstein. It was

designed in 2005 and then later submitted to the eSTREAM European Union

cryptographic validation process by Bernstein.

sm4 SM4 (formerly SMS4) is a block cipher used in the Chinese National

Standard for Wireless LAN WAPI (WLAN Authentication and Privacy

Infrastructure).

BRIDGING THE PAST AND THE FUTURE

SSL/TLS - DATA ENCRYP TION

How are keys used?

To send data securely to the host

• Encryption key is made PUBLIC

• Key is used to encrypt data

• Based on the PRIVATE key

• Decryption key is kept PRIVATE on host

• Never should be revealed

SSL/TLS - DATA ENCRYP TION

Which cipher is used?

• Server and client negotiate which ciphers they support

• Client identifies which ciphers it supports

• Supplied in order of preference

• Server identifies which cipher it wants

• Client confirms

• Server will reject any it considers unsafe or unsupported

• Connection fails if none are acceptable

Using insecure ciphers

will result in

PCI Compliance failure

SSL/TLS - AUTHENTICATION

Validation/Authentication of system done using certificates (X509)

• Certificate contains the following:

• Server Name/Address

• Start/End Dates for which certificate is valid

• Issuer identification

• Name, Country, City, State/Province

• Public key

• Certificates exchanged during negotiation

• SHOULD be validated for secure connection

SSL/TLS - AUTHENTICATION

What is generally validated?

• Current date is within the start and end dates for certificate

• The server address on the certificate matches the server we connected to

• The certificate was issued by a trusted certificate authority

• The certificate can be found in a list of trusted certificates

Optional test

• Match to previously known Public key

SSL/TLS - AUTHENTICATION

Normally, only Server provides certificate

• Client only provides a Public key

When would Client require certificate?

• Controlled access to specific pre-cleared clients

• Cannot connect unless you have a known certificate

SSL/TLS - HOW TO ESTABLISH TRUST

SSL/TLS provides a mechanism that establishes “TRUST”

• There are KNOWN “Trusted” companies that provide “certificates”

• Known as “Certificate Authorities” (CA)

• Most commonly used CA are:

• Let’s Encrypt

• GlobalSIgn

• IdenTrust

• Sectigo (Comodo Cybersecurity)

• DigiCert

• GoDaddy

SSL/TLS - GET TING A “ TRUSTED” CERTIFICATE

You need a certificate from a CA for HTTPS

• If not trusted, browsers will complain

• Expired certificate is the most common

• Most will reject connection

• Certificate MUST match site name

How to obtain a certificate?

• 1 year certificate

• Contact a CA provider

• Costs around $100+ per year

• Requires company background check

• 90-day certificate

• Let’s Encrypt

• Free

• Auto renews via domain validation

SSL/TLS - “SELF-SIGNED” CERTIFICATE

You can generate a certificate for yourself

• By default, it will not be trusted

• Can be used by all SSL/TLS software

• Application can decide if TRUST is required

• If TRUST required, users can add it to their local store

• Includes all the same data as a standard certificate

SSL/TLS - “SELF-SIGNED”
CERTIFICATE

• To generate a file:

run "*tools/sslcert"

• Uses Internet to create certificate on our servers

• Returns single PEM file with certificate and key information

• Generates 2048-bit key

• Text mode version also available

PxPlus includes *TOOLS/SSLCERT utility to create self-signed
certificate

https://manual.pvxplus.com/page/utilities/SSL%20Cert%20Generator.htm

SSL/TLS - PXPLUS SSL OP TIONS

• To make a client connection using SSL/TLS use the [TCP] option SECURE

• To make a server using SSL/TLS use the [TCP] SECURE=xxxx option

• Where xxxx is the path to the certificate

• Supports X509 certificates created for use with OpenSSL or Apache

BRIDGING THE PAST AND THE FUTURE

OPEN (HFN) "[TCP]https://myserver.com/app;443;SECURE"

SSL/TLS - PXPLUS SSL OP TIONS

• An X509 certificate can be in the form of a PEM file, which contains both the certificate and Private key

• The [TCP] option SECURE=xxx can be used to specify the certificate file

• An X509 certificate can be in the form of two PEM files, one containing the certificate and the other containing

the Private key

• The [TCP] option SECURE=xxx can be used to specify the certificate file while PRIVKEY=xxx can be used to

specify the private key file

• You may get a certificate in a different format, such as the Microsoft PFX file format

• Convert to a PEM file using the PxPlus utility, *TOOLS/PFXCERTCONVERT

BRIDGING THE PAST AND THE FUTURE

OPEN (HFN) "[TCP];443;SECURE=/etc/letsencrypt/live/exp.com/fullchain.pem;PRIVKEY=/etc/letsencrypt/live/exp.com/privkey.pem"

CALL "*tools/pfxcertconvert", "C:\ProgramData\Certify\certes\assets\pfx\exp.com.pfx", "password", "converted.pem"

OPEN (HFN) "[TCP];443;SECURE=converted.pem"

OPEN (HFN) "[TCP];443;SECURE=/etc/certs/mycert.pem"

https://manual.pvxplus.com/PXPLUS/utilities/pfxcertconvert.htm

SSL/TLS - PXPLUS SSL OP TIONS

Defining Supported Protocol

• Default will connect using any protocol from SSL v2 through TLS 1.3

To suppress any of these protocols:

 NoSSLv2, NoSSLv3, NoTLSv1, NoTLSv1.1, NoTLSv1.2, NoTLSv1.3

To force one specific protocol:

 TLS, TLS1.1, TLS1.2, TLS1.3

OPEN (HFN) "[TCP];443;SECURE=/etc/certs/mycert.pem;TLSv1.3"

SSL/TLS - PXPLUS SSL OP TIONS

Certificate Validation

• Ignore doesn’t validate certificate (default)

• Validate makes sure certificate:

• Is not expired

• Is for the proper server by matching name

• Trust extends Validation

• Certificate must have come from trusted CA

• PxPlus ships with list of trusted certificates

 <pxplus exe directory>/ca-bundle.crt

• This file MUST be updated periodically

Certificates= Ignore | Validate | Trust

Can be changed using

PVX_CERTSTORE

environment variable

Default set using

PVX_CERTIFICATES

environment variable

BRIDGING THE PAST AND THE FUTURE

OPEN (HFN) "[TCP];443;SECURE;certificates=Validate"

https://raw.githubusercontent.com/bagder/ca-

bundle/master/ca-bundle.crt

SSL/TLS - PXPLUS SSL OP TIONS

Defining Acceptable/Supported Ciphers

• Contents of list defined at www.openssl.org

• PCI compliance (currently)

Ciphers=ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-

GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-

CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-

SHA384:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256

• Includes only known strong ciphers

Ciphers= list of accepted ciphers

BRIDGING THE PAST AND THE FUTURE

OPEN (HFN) "[TCP];443;SECURE=/etc/certs/mycert.pem;Ciphers=ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-

SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-

CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-

SHA384:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256;NoSSLv2;NoSSLv3;

NoTLSv1;NoTLSv1.1"

SSL/TLS - EZWEB

• Specify an SSL certificate when launching EZWeb server to enable SSL/TLS encryption

• EZWeb supports X509 combined and separated PEM files

• EZWeb supports PFX certificates without conversion

• If the PFX is password protected, use pfxpswd= option

• Also can be specified via ezweb.conf file

• SECURE - to specify combined PEM file, certificate PEM file or PFX file

• PRIVKEY - to specify Private key PEM file

• PFXPSWD - to specify password for the PFX file

BRIDGING THE PAST AND THE FUTURE

/app/pxplus "*ezweb/server" -arg 443 "/etc/certs/mycert.pem"

/app/pxplus "*ezweb/server" -arg 443 "/etc/letsencrypt/live/exp.com/fullchain.pem

privkey=/etc/letsencrypt/live/exp.com/privkey.pem"

"C:\app\pxplus.exe" *ezweb\server -arg 443 "C:\ProgramData\Certify\certes\assets\pfx\exp.com.pfx pfxpswd=password"

port 443

secure "/etc/letsencrypt/live/exp.com/fullchain.pem"

privkey "/etc/letsencrypt/live/exp.com/privkey.pem"

nobrowse

SSL/TLS - EZWEB

• Can launch EZWeb Server using graphical utility

• IDE >Web Deployment > Launch EZWeb Server

• Supports same security options as command line

• System Tray messages updated when secure

BRIDGING THE PAST AND THE FUTURE

SSL/TLS - PXPLUS CLIENT-SERVER AND SSL

• When the CS host/client is launched, [TCP] options can be used to specify SSL/TLS options

 Client-side CS options

 (workstation)

Host-side CS options

(server)

Default options can be set in:

PXP_CS_OPT

Environment variable

Default options can be set in:

PXP_CS_OPT_CLIENT

Environment variable

pxplus.exe *plus\cs\host -arg 12345;secure= C:\app\certs\app.pem;TLS1.3

pxplus.exe *plus\cs\client -arg MySrvr;12345;secure;certificates=Validate

SSL/TLS - PXPLUS CLIENT-SERVER AND SSL

• PUBKEY=xxxxxxx can be used on the client to specify which Public key to accept from the server or to ask the

user to confirm

• If xxxxxxx contains the word "check", then on the first connect to the server, the client process will ask the user

to confirm that the Public key signature it received is correct

• If xxxxxxx contains a Public key signature (Base 64 of the SHA-256 of the X509 Public key), then it MUST

match the server value

BRIDGING THE PAST AND THE FUTURE

pxplus.exe *plus\cs\client -arg MySrvr;12345;secure;pubkey=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

SSL/TLS - FUTURE CONSIDERATIONS

SSL is constantly changing to address new vulnerabilities

• Maintain your PxPlus version current

• We update SSL to latest options with each release

• On Linux, keep your OpenSSL current

• For Windows, we ship current OpenSSL libraries

• If using trust relationships, update ca-bundle.crt

T WO-FACTOR AUTHENTICATION

T WO-FACTOR
AUTHENTICATION

• Two-Factor Authentication (TFA) increases system

security by requiring users to validate their identity

beyond entering their user name and password before

they are allowed to log on

• The method of validation varies but common ones are

• Likely you have used this with many different web

services

BRIDGING THE PAST AND THE FUTURE

• E-Mail

• SMS

• Authenticator app

• Hardware token

https://manual.pvxplus.com/page/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Two%20Factor%20Authentication.htm

T WO-FACTOR
AUTHENTICATION

• Nomads/iNomads support Two-Factor Authentication via

the built in Nomads security/logon system

• Nomads security must be setup

• Users created and security classes defined

• E-Mail and SMS verification is supported

• If both setup, user can choose method to use when logging in

• The Two-Factor Verification window displays when a

user is required to provide identity verification before

being allowed to log on

• This window instructs the user to enter the security code sent

to his/her email address or SMS phone number

• Webster also supports Two-Factor Authentication

BRIDGING THE PAST AND THE FUTURE

Learn more at the ‘PxPlus

on the Web’ session

T WO-FACTOR
AUTHENTICATION

• To set up TFA, click the “Two-Factor Authentication

Setup” button in Nomads security User Maintenance

• This button is available only to users with the

ADMIN classification

• TFA can be disabled, optional by user, or mandatory

• Specify an email server with account and/or a text

message (SMS) provider and account (Both can be

set up)

• TFA authentication can be saved per device, thereby

avoiding having to authenticate every time

• Period of time before you need to reauthenticate is

configurable

BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/PXPLUS/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Assigning%20Users%20to%20Classifications.htm

T WO-FACTOR
AUTHENTICATION

• To define a users TFA settings use User Maintenance

• TFA can be disabled, required every time, or saved

per device for a time

• Each user then needs to provide a verifiable email

address and/or an SMS compatible phone number

• If only one of these is provided, then that option

will be used

• If both an email address and SMS phone number

are provided, the user will be allowed to select

which one he/she wishes to use for verification

BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/PXPLUS/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Assigning%20Users%20to%20Classifications.htm

T WO-FACTOR
AUTHENTICATION

• When Two-Factor Authentication is set up, if a user enters

an incorrect password during system logon and the user's

email address and/or SMS phone number are available,

the system will provide a “Forgot Password” option in the

Sign on window

• Selecting this option allows the system to re-authenticate

the user for the purpose of resetting his/her password by

displaying the following message

• If the user responds Yes, the system proceeds to verify the

user's identity by sending a security code to the user's

email address or SMS phone number. If the verification is

successful, the Password Change window displays to

allow the user to create a new password.

• If the user responds No, no identity verification is done,

and the user is returned to the Sign on window

BRIDGING THE PAST AND THE FUTURE

Forgot Password

OAUTH 2.0 SECURE WEB SERVICES

OAUTH 2.0 SECURE WEB SERVICES

• OAuth 2.0 is the modern standard for securing access to Web services

• Allows you to get authorized with Web services, such as Google, Salesforce or any Web service that uses

OAuth 2.0

• Example: An application wants to be able to upload and download a file to a Google Drive

• Oauth 2.0 is used by the application to get the user to sign in to their Google account and allow their

application access to their Google drive

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

• Two types of OAuth 2.0 to consider

• Grant type

• client_credentials - simpler and can be handled with a simple Web request to the token endpoint URL

• Adds extra layer on top of username and password that is needed for web service access

• This layer can be modified/revoked at any time separate to username and password

• authorization_code - requires user to allow access via Web browser

• Adds same extra layer as above with same benefits

• Adds another extra layer where a user has to manually allow the application access

• The application can ask for specific access and the user can pick and choose which they grant

• Supports refresh tokens to avoid asking the user every time

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

• You set up a User ID/Client with the Web service provider and they will provide you with a Client ID and a

secret code, as well as one or two URLs (these may be the same)

• Authorization endpoint URL (request URL for users to allow access)

• Token endpoint URL (get access/refresh token)

• To access an OAuth 2.0 restricted Web service, an access token must be acquired and then passed in with the

header of the Web service request

• Access tokens expire, and once expired, a new access token must be requested to make a new Web service

request

• This token must be included in the HTML header for any subsequent requests

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

How to get access token for grant type client_credentials

• Make an HTTP POST request to the token endpoint of the OAuth 2.0 Web service you want access to

• The header of the request must include "Authorization: Basic " followed by the BASE64 encoded Client ID and

Client secret separated by a : (colon)

• The body of the request must be "grant_type=client_credentials"

• The response from a successful request is a 200 status in the response header and the access token via a JSON

response

BRIDGING THE PAST AND THE FUTURE

{

 "access_token": "Access-Token",

 "token_type": "Bearer",

 "expires_in": 3600

}

OAUTH 2.0 SECURE WEB SERVICES

Example

BRIDGING THE PAST AND THE FUTURE

clientId$="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

clientSecret$="xx"

call "*WEB/BASE64;ENCODE_STR",clientId$+":"+clientSecret$,usrpsw$

extrahdr$="Authorization: Basic "+usrpsw$

reqData$="grant_type=client_credentials"

call "*plus/web/request","https://www.exsrvr.com/oauth2/token",reqData$,resp$,resphdr$,"","",extrahdr$

dim load jsonAuth${all}=resp$

accessToken$=jsonAuth$["access_token"]

OAUTH 2.0 SECURE WEB SERVICES

How to get access token for grant type authorization_code

• The First stage is to have the user grant your application access to an account of the provider (e.g. grant your

application access to a Salesforce account)

• If you have done this step before and saved the Refresh token, you can skip this step

• First stage steps are:

1. The application identifies itself to the provider, giving it the Client ID and secret code

2. The service provider returns PVX Plus a URL that the user must go to in order to authorize access

3. The user authorizes access to the provider via a Web browser

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

How to get access token for grant type authorization_code

• The Second stage is where you request an access and refresh using the token endpoint of the OAuth 2.0 Web

service you want access to

• Second stage steps are:

1. Request an Access token and a Refresh token from the web service provider using the Token_URL$

2. If this is the first time, save the Refresh token to avoid logging in the next time

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

• The "*obj/oauth2" object handles OAuth 2.0 grant type authorization_code for you

• The object has a few predefined services so you don’t have to specify the authorization and token URLs

• Google

• Salesforce

• If accessing a non-predefined service, just specify URLs via the Authorization_URL$ and Token_URL$ properties

• Properties used to set ClientID$ and client_secret$

• Methods used to perform first and second stage of authorization

• First stage:

• Enable_Certification(msg$)

• msg$ will be the message that appears on the authorization accepted screen

• Get_Authorization_URL$(scope$, prompt$)

• scope$ is used by some Oauth 2.0 servers when they define multiple scopes of access to specify what access they require

• prompt$ specifies whether the user is prompted and for what when they request authorization

https://developers.google.com/identity/openid-connect/openid-connect#prompt

• Second stage: Get_Access_token() BRIDGING THE PAST AND THE FUTURE

https://developers.google.com/identity/openid-connect/openid-connect#prompt

OAUTH 2.0 SECURE WEB SERVICES

• The First stage requires an OAuth 2.0 agent to process the user authorization

• This *obj/oauth2 object, by default, points to a PVX Plus Technologies hosted OAuth 2.0 agent

• https://www.pvxplus.com/oauth.pvp

• You may need to register the agent URL used with the Web service so that it knows it is safe to redirect to that

URL

• This is usually done from a Web browser via a site provided by the Web service

• It is also possible to self-host the OAuth 2.0 agent

• Self-hosting may be desirable if you want to avoid relying on the PVX Plus servers being up or if you want to

keep it in house for security

• To Self-host

• Have a web server setup that can run PxPlus programs

• Copy the files from the *web/services/oauth2/agent directory to the Web server docroot directory

• Set the Agent_URL$ property to my_server_url/oauthagent.pvp

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

Example

BRIDGING THE PAST AND THE FUTURE

clientId$="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

clientSecret$="xx“

oAuth2=new("*obj/oauth2")

oAuth2'Service$="google"

oAuth2'client_id$=clientID$; oAuth2'client_secret$=clientSecret$

if refreshToken$="" then {

oAuth2'Enable_Certification("Do you consent to allow access of your Google account to example app?")

wait 1

url$=oAuth2'Get_Authorization_URL$("https://www.googleapis.com/auth/drive","consent select_account")

system_help url$

input "Press any key to continue after logging into account and allowing PxPlus access:",*;print ""

} else { oAuth2'Refresh_token$=refreshToken$ }

oAuth2'Get_Access_token()

refreshToken$=oAuth2'Refresh_token$

accessToken$=oAuth2'Access_token$

drop object oAuth2

OAUTH 2.0 SECURE WEB SERVICES

BRIDGING THE PAST AND THE FUTURE

OAUTH 2.0 SECURE WEB SERVICES

Make Request with Access Token

• Either way you acquire an Access token making the Web request is the same

• Request the Web service with an "Authorization: Bearer " followed by the Access token in the header

• The Web service request is otherwise the same as a request to a Web service with no OAuth2 security

BRIDGING THE PAST AND THE FUTURE

authHdr$="Authorization: Bearer "+accessToken$

call "*plus/web/request","https://www.exsrvr.com/exService","",resp$,resphdr$,"","",authHdr$

OAUTH 2.0 SECURE WEB SERVICES

• PxPlus provides some built-in Web Services

• Query

• Chart

• Report

• File Maintenance

• File Access

• OAuth2 security can be added to restrict access to PxPlus Web Services

• First, OAuth2 clients must be defined using either OAuth2 Client Maintenance or the OAuth2 Clients Object

• Next, access is restricted either via NOMADS security on a query or report or by security enabled in Web

Services Maintenance

• The grant type is client_credentials and the token URL is pxplusServer/services/oauth2/token.pxp

BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/page/PxPlus%20Web%20Services.htm
https://manual.pvxplus.com/page/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Oauth2%20Client%20Maintenance.htm
https://manual.pvxplus.com/page/Oauth2%20Clients%20Object.htm
https://manual.pvxplus.com/page/Web%20Services%20Maintenance.htm
https://manual.pvxplus.com/page/Web%20Services%20Maintenance.htm

OAUTH 2.0 SECURE WEB
SERVICES

• You must first set up Security Classifications and at least an

ADMIN User in User Maintenance prior to setting up OAuth2

clients

• OAuth2 Client Maintenance is used for adding and maintaining

OAuth2 clients

• OAuth2 clients are required to access PxPlus Web Services that

have access restricted either via NOMADS security on the query

or report or by security enabled in Web Services Maintenance

• OAuth2 allows for strong security by properly managing clients

• If a user's system has been compromised, you can change the

Client secret, thus revoking the compromised credentials access

• If a user no longer needs access or access needs to be revoked,

the client can be deleted, thus revoking the user access

• OAuth2 clients can be managed programmatically and/or

without a graphical user interface using the OAuth2 Clients

Object
BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/page/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Defining%20Classifications.htm
https://manual.pvxplus.com/page/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Assigning%20Users%20to%20Classifications.htm
https://manual.pvxplus.com/page/NOMADS%20Graphical%20Application/System%20Maintenance%20Tools/Security%20Manager/Oauth2%20Client%20Maintenance.htm
https://manual.pvxplus.com/page/Oauth2%20Clients%20Object.htm
https://manual.pvxplus.com/page/Oauth2%20Clients%20Object.htm

OAUTH 2.0 SECURE WEB SERVICES

• OAuth 2.0 Clients Object (*web/services/oauth2/clients)

• Maintain OAuth 2.0 clients programmatically and without the need for a user interface

• Generate and validate Access tokens

BRIDGING THE PAST AND THE FUTURE

! Create a new Oauth 2.0 client

oauth2_clients=new("*web/services/oauth2/clients",adminUsername$,adminPassword$)

read data from oauth2_clients'SaveNewClient$("ABC Shipping", "USER") to client_Id$,client_Secret$,access_Token_Key$

! Revoke Access to Compromised Client by Changing Client Secret

oauth2_clients=new("*web/services/oauth2/clients",adminUsername$,adminPassword$)

read data from oauth2_clients'GetClient$("ABC Shipping") to client_Id$,client_Secret$,access_Token_Key$,security_Class$

oauth2_clients'SaveClient("ABC Shipping", client_Id$, oauth2_clients'NewClientSecret$() ,access_Token_Key$,security_Class$)

https://manual.pvxplus.com/PXPLUS/Oauth2%20Clients%20Object.htm

OAUTH 2.0 SECURE WEB SERVICES

• Add OAuth2 Security to PxPlus-built Web Service

• The grant type is client_credentials and the token URL is pxplusServer/services/oauth2/token.pxp

• Provide this to the consumers of your Web service

• It is possible to implement your own OAuth2 Access token server using the OAuth2 Clients Object if the one

provided with PxPlus does not meet an application's requirements

• Use the OAuth 2.0 Clients Object in the code for your Web service to validate Access token

BRIDGING THE PAST AND THE FUTURE

if len(%http_authorization$)>=7 and lcs(mid(%http_authorization$,1,7))="bearer " {

 base64AccessToken$=stp(mid(%http_authorization$,8,err=Return_auth_err),"B")

 accessToken$=cvs(base64AccessToken$,"BASE64URL:ASCII",0)

 oauth2clients=new("*web/services/oauth2/clients",err=return_auth_err)

 if oauth2clients'ValidateAccessToken$(accessToken$)="" then goto return_auth_err

 drop object oauth2clients,err=*next

 }

	Slide 1: Security
	Slide 2: Agenda
	Slide 3: SSL/TLS
	Slide 4: SSL/TLS - Overview
	Slide 5: SSL/TLS - Overview
	Slide 6: SSL/TLS - Overview
	Slide 7: SSL/TLS - Data Encryption
	Slide 8: SSL/TLS - Data Encryption
	Slide 9: SSL/TLS - Data Encryption
	Slide 10: SSL/TLS - Data Encryption
	Slide 11: SSL/TLS - Authentication
	Slide 12: SSL/TLS - Authentication
	Slide 13: SSL/TLS - Authentication
	Slide 14: SSL/TLS - How to Establish TRUST
	Slide 15: SSL/TLS - Getting a “Trusted” Certificate
	Slide 16: SSL/TLS - “Self-Signed” Certificate
	Slide 17: SSL/TLS - “Self-Signed” Certificate
	Slide 18: SSL/TLS - PxPlus SSL Options
	Slide 19: SSL/TLS - PxPlus SSL Options
	Slide 20: SSL/TLS - PxPlus SSL Options
	Slide 21: SSL/TLS - PxPlus SSL Options
	Slide 22: SSL/TLS - PxPlus SSL Options
	Slide 23: SSL/TLS - EzWEB
	Slide 24: SSL/TLS - EzWEB
	Slide 25: SSL/TLS - PxPlus Client-Server and SSL
	Slide 26: SSL/TLS - PxPlus Client-Server and SSL
	Slide 27: SSL/TLS - Future Considerations
	Slide 28: Two-Factor Authentication
	Slide 29: Two-Factor Authentication
	Slide 30: Two-Factor Authentication
	Slide 31: Two-Factor Authentication
	Slide 32: Two-Factor Authentication
	Slide 33: Two-Factor Authentication
	Slide 34: oAuth 2.0 Secure Web Services
	Slide 35: oAuth 2.0 Secure Web Services
	Slide 36: oAuth 2.0 Secure Web Services
	Slide 37: oAuth 2.0 Secure Web Services
	Slide 38: oAuth 2.0 Secure Web Services
	Slide 39: oAuth 2.0 Secure Web Services
	Slide 40: oAuth 2.0 Secure Web Services
	Slide 41: oAuth 2.0 Secure Web Services
	Slide 42: oAuth 2.0 Secure Web Services
	Slide 43: oAuth 2.0 Secure Web Services
	Slide 44: oAuth 2.0 Secure Web Services
	Slide 45: oAuth 2.0 Secure Web Services
	Slide 46: oAuth 2.0 Secure Web Services
	Slide 47: oAuth 2.0 Secure Web Services
	Slide 48: oAuth 2.0 Secure Web Services
	Slide 49: oAuth 2.0 Secure Web Services
	Slide 50: oAuth 2.0 Secure Web Services

