
WORKING WITH EXTERNAL TOOLS

DireXions 2024

AGENDA

Visual Studio Code Extension

Google Workspace Objects

Working with Web Services

PayPal and Salesforce Examples

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE EXTENSION

VISUAL STUDIO CODE EXTENSION

• PxPlus Visual Studio Code Extension is an extension for

Visual Studio Code to enable working with PxPlus programs

• PxPlus 2024 or newer is required

• It provides the following functionality:

• Create new PxPlus programs

• Open and edit existing PxPlus programs

• Work with binary PxPlus programs

• Work with text-based PxPlus programs

• PxPlus syntax highlighting

• PxPlus program error diagnostics

• Current document-based Auto Complete

https://manual.pvxplus.com/page/Visual%20Studio.htm

VISUAL STUDIO CODE
EXTENSION

How to Install PxPlus Extension in Visual Studio Code

1. Download and install Visual Studio Code from the

Visual Studio Code Web site

https://code.visualstudio.com/

2. On the Activity Bar on the far left side of Visual

Studio Code, click the Extension icon

 This displays the Extensions view and the

Extensions Marketplace

3. Find the PxPlus extension by entering PxPlus in the

Search Extensions in Marketplace input box

4. In the list that displays, click on PxPlus and then click

the Install button to install the PxPlus extension

BRIDGING THE PAST AND THE FUTURE

https://code.visualstudio.com/

VISUAL STUDIO CODE
EXTENSION

How to Set Up PxPlus Extension in Visual Studio Code

Before you can use the PxPlus Visual Studio Code

extension, you must tell the extension where PxPlus is

installed:

• Open the Visual Studio Code settings by clicking the

Gear icon in the bottom left corner and then select

Settings from the menu that displays

• Expand the Extensions node and then select the

PxPlus node

• Under PxPlus Path, enter the path to the directory

where the PxPlus executable is located (i.e. C:\PVX

Plus Technologies\PxPlus 2024)

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

How to Set Up PxPlus Extension in Visual Studio Code

Before you can use the PxPlus Visual Studio Code

extension, you must tell the extension where PxPlus is

installed:

• Open the Visual Studio Code settings by clicking the

Gear icon in the bottom left corner and then select

Settings from the menu that displays

• Expand the Extensions node and then select the

PxPlus node

• Under PxPlus Path, enter the path to the directory

where the PxPlus executable is located (i.e. C:\PVX

Plus Technologies\PxPlus 2024)

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

How to Set Up PxPlus Extension in Visual Studio Code

Before you can use the PxPlus Visual Studio Code

extension, you must tell the extension where PxPlus is

installed:

• Open the Visual Studio Code settings by clicking the

Gear icon in the bottom left corner and then select

Settings from the menu that displays

• Expand the Extensions node and then select the

PxPlus node

• Under PxPlus Path, enter the path to the directory

where the PxPlus executable is located (i.e. C:\PVX

Plus Technologies\PxPlus 2024)

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

How to Set Up PxPlus Extension in Visual Studio Code

Before you can use the PxPlus Visual Studio Code

extension, you must tell the extension where PxPlus is

installed:

• Open the Visual Studio Code settings by clicking the

Gear icon in the bottom left corner and then select

Settings from the menu that displays

• Expand the Extensions node and then select the

PxPlus node

• Under PxPlus Path, enter the path to the directory

where the PxPlus executable is located (i.e. C:\PVX

Plus Technologies\PxPlus 2024)

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

How to Set Up PxPlus Extension in Visual Studio Code

If you plan to work with text-based PxPlus programs,

then you must also specify which file extensions Visual

Studio Code should consider a text-based PxPlus

program:

• Under Text Program File Extensions, add a file

extension to the list by clicking the Add Item button,

then enter a .xxx file extension and then click OK

• To add more than one file extension, repeat this step

as many times as needed

• By default, the only extension on the list is .pxprg

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

• The remaining settings are optional and

• Control the number of errors reported before it

stops reporting new errors

• Control how the program is displayed/saved

• These settings are the same for all PxPlus program

editors

VISUAL STUDIO CODE
EXTENSION

To Create New PxPlus Programs

• From the File menu or from the Welcome screen,

select New File

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Create New PxPlus Programs

• A list of possible file types to create will display

• From the list, select Create a PxPlus Program

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Create New PxPlus Programs

• Alternatively right click in the Explorer and select

Create a PxPlus Program

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Create New PxPlus Programs

• Use the Save dialog to choose a pathname for

your new program

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Create New PxPlus Programs

• Now that you have a new PxPlus program you can

begin coding

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Edit Existing PxPlus Programs

• Add a PxPlus folder to the workspace

• Click on the PxPlus icon in the top right corner of an

Edit window

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Edit Existing PxPlus Programs

• Add a PxPlus folder to the workspace

• Alternatively click the Open PxPlus Folder button in

the Explorer window when no folders are open

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Edit Existing PxPlus Programs

• Add a PxPlus folder to the workspace

• Another way is to click the Add PxPlus Folder to

Workspace... menu item from the Explorer right click

menu

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Edit Existing PxPlus Programs

• Select a PxPlus folder to add to the workspace

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Edit Existing PxPlus Programs

• Any PxPlus programs or text-based PxPlus programs

that are opened via this workspace will be recognized

as a PxPlus program by Visual Studio Code

• This enables all the features and allows PxPlus

programs to be edited

BRIDGING THE PAST AND THE FUTURE

VISUAL STUDIO CODE
EXTENSION

To Edit Existing PxPlus Programs

• Syntax errors are identified with a wavy line, and

the number or errors are displayed beside the

program name

• Hovering over the error displays a dialog that

provides additional details about the error

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE OBJECTS

GOOGLE WORKSPACE OBJECTS

PxPlus objects that were created to work with the Google Workspace® cloud-based applications

• Google Drive (*obj/GoogleDrive) - Works with the Google Workspace® Drive file storage application

• Google Docs (*obj/GoogleDocs) - Works with the Google Workspace® Docs word processing application

• Google Sheets (*obj/GoogleSheets) - Works with the Google Workspace® Sheets spreadsheet application

BRIDGING THE PAST AND THE FUTURE

• List files

• Upload/Download files

• Create folders

• Export files

• Delete files

• Copy files

• Create document

• Insert/Append/Delete text

• Find and replace/insert text

• Set font

• Find text

• Set color

• Uses Drive object

• Export as Word document

• Create spreadsheet

• Read/Write to cells

• Find & replace data in cells

• Create sheets

• Create/Modify/Delete

named ranges

• Insert/Delete Columns

• Insert/Delete Rows

• Set font

• Set number format

• Set color

• Uses Drive object

• Export as Excel spreadsheet

https://manual.pvxplus.com/PXPLUS/Google%20Workspace%20Objects/Google%20Drive%20Object.htm
https://manual.pvxplus.com/PXPLUS/Google%20Workspace%20Objects/Google%20Docs%20Object.htm
https://manual.pvxplus.com/PXPLUS/Google%20Workspace%20Objects/Google%20Sheets%20Object.htm

GOOGLE WORKSPACE OBJECTS

• Need to do the Google API App Setup to obtain a Client ID and Client Secret

• Must allow access to the needed Google APIs

• To test the Google Workspace objects, you need to add, as a "Test User", the Google account that you will use to

test the objects and whose Drive, Docs and/or Sheets you will access

• Once testing is done, you can publish the app, which makes it available for others (besides Test Users) and removes

the unverified warning

• Publication requires Google to verify the app, and Google informs you about what this process requires when

you publish the app

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Go to the Google API Console

• Create or select a project

• Input a name and if needed an organization

• Click CREATE

BRIDGING THE PAST AND THE FUTURE

https://console.developers.google.com/apis

GOOGLE WORKSPACE
OBJECTS

• Allow access to Google APIs

• Enable Google Drive API

• Enable Google Docs API

• Enable Google Sheets API

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Create an OAuth consent screen

• Click OAuth consent screen

• Select External and click CREATE

• Set the Application name, Application logo, and

Support e-mail that will display on your

application consent screen

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Create an OAuth consent screen

• Set Application links

• Input pvxplus.com for Authorized domains

• Click SAVE AND CONTINUE

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Define scopes

• Click ADD OR REMOVE SCOPES

• Select Google Drive API ../auth/drive

• Select Google Docs API ../auth/documents

• Select Google Sheets API ../auth/spreadsheets

• Click UPDATE and then click SAVE AND CONTINUE
BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Click ADD USERS

• Only emails added here will be able to use this API

until app is published

• While unpublished, the test users will be warned the

app is not verified

• Click SAVE AND CONTINUE

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Create Client ID and Client Secret

• Click Credentials

• Click Create credentials

• Click OAuth client ID

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• Create Client ID and Client Secret

• For Application type, select Web application

• Authorized redirect URIs

• Click ADD URI

• Add https://www.pvxplus.com/oauth.pvp

• Click CREATE

BRIDGING THE PAST AND THE FUTURE

https://www.pvxplus.com/oauth.pvp

GOOGLE WORKSPACE
OBJECTS

• Create Client ID and Client Secret

• Copy/Save the client ID and client secret

• These numbers are needed by the Google

Workspace objects

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE
OBJECTS

• When done testing, you can publish the app

• This will allow anyone to use the app

• Removes the unverified warning

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE OBJECTS

• To instantiate a Google Workspace object, include the Client ID and Client Secret

• During instantiation, user will be asked to select and login to a Google account and allow PxPlus access to it via a

web browser

• When this process is completed, the Login() method must be run to complete login

• Once logged in, the login_token$ property can be accessed and saved

• This may optionally be used the next time the object is instantiated to avoid having to select a Google account

and login again

• Methods and properties are all designed to be similar to the Microsoft Word and Excel objects

BRIDGING THE PAST AND THE FUTURE

sheets_obj=new("*obj/GoogleSheets",client_ID$,client_secret$[,login_token$])

GOOGLE WORKSPACE OBJECTS

• Files are stored in your Google Drive cloud storage, not as local files

• Google Drive supports directories and sub-directories

• All methods that support a path allow the Google Drive directories and the file name to be specified so that files

can be organized more easily

• For example, to create a new document in the Google Drives directory "Template", the following method can be

used:

 driveCreateDocument("Templates\invoice")

• To work with a local file, upload it to Google Drive by using the UploadFile() method

• May convert the file into a Google file type such as a document or spreadsheet

• List of supported conversions: https://developers.google.com/drive/api/v3/manage-uploads#import_to_google_docs_types

• To download a Google file such as a document or spreadsheet, use the DownloadFile() or ExportFile() method

• Export converts the file into a local file type of file, determined by the file extension specified in the output path

• List of supported conversions: https://developers.google.com/drive/api/v3/ref-export-formats

BRIDGING THE PAST AND THE FUTURE

https://developers.google.com/drive/api/v3/manage-uploads#import_to_google_docs_types
https://developers.google.com/drive/api/v3/ref-export-formats

GOOGLE WORKSPACE OBJECTS

• Most times the first thing you will need to do is open a file

• To open a file you use the Google Drive path or file ID in one of the open methods

• OpenDocumentByID(document_fileID$) or OpenDocumentByPath(document_path$)

• OpenSpreadsheetByID(spreadsheet_fileID$) or OpenSpreadsheetByPath(spreadsheet_path$)

• OpenFileByID(fileID$) or OpenFileByPath(file_path$)

• When a file is opened, the object assigns it an index

• The index start at 1 and goes up for each open file

• The ACTIVE_DOCUMENT, ACTIVE_SPREADSHEET, and ACTIVE_FILE properties can be used to get the index

of the last opened file

• If no file is specified in a method call, the active index is used

• THE DOCUMENTS_COUNT, SPREADSHEETS_COUNT, and FILES_COUNT properties can be used to find out

how many opened files there are

• You can use this to loop through each open file if the loop starts at 1 and goes to the count

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE OBJECTS

For documents you can work with different

• Paragraphs

• Paragraphs are referenced via a 1 based index number

• Paragraph 1 is the 1st paragraph in the document

• Paragraph 10 is the 10th paragraph in the document or appended to the end of the document if there is less than 10

paragraphs in the document

• docs'InsertParagraph("My new paragraph.",10)

• Sentences

• These work the same as paragraphs and are just a 1 based index

• docs'InsertSentence("My new sentence. ",130)

• Modify text at a searched for location

• docs'FindInsert("something"," was changed")

• Defaults to inserting after the find position

• Use the property INSERT_BEFORE to have it insert before the fond position

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE OBJECTS

For spreadsheets you can work with different

• Sheets in the spreadsheet

• sheets'CreateSheet("Added Sheet")

• sheets'SetSheet(3) or sheets'SetSheet("Added Sheet")

• Object keeps track of ACTIVE_SHEET which allows code to not specify a sheet defaulting to active sheet

• Ranges

• sheets'AddNamedRange("totals","A30:D30")

• sheets'SetRange("A30:D30") or sheets'SetRange("totals")

• Object keeps track of ACTIVE_RANGE$ which allows code to not specify a range defaulting to the active range

• Cells

• Can be specified as a specific cell "A12" or a range or named range

• Find/replace

• sheets'FindReplaceAll("[CompanyName]",companyName$)

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE OBJECTS

BRIDGING THE PAST AND THE FUTURE

clientID$="xx"

clientSecret$="xxxxxxxxxxxxxxxx"

gd=new("*obj/GoogleDocs",clientID$,clientSecret$)

input "Press any key to continue after logging into Google account and allowing PxPlus access:",*;print ""

gd'Login()

!

if gd'OpenDocumentByPath("myGoogleDoc")=0 then exit 15

gd'FindReplaceAllByPath("[FirstName]", "Jack" ,"all")

gd'FindSetFont("New discount","Algerian,18,bold")

gd'FindSetColor("25% off coupon","red")

gd'ExportDocument(path$+clientID$+".docx")

gd'CloseDocument(1)

!

drop object gd

GOOGLE WORKSPACE OBJECTS

BRIDGING THE PAST AND THE FUTURE

GOOGLE WORKSPACE OBJECTS

Before After

BRIDGING THE PAST AND THE FUTURE

WORKING WITH WEB SERVICES

WORKING WITH WEB SERVICES

• Examples of Web Services

• A Web Service exchanges information between applications using the standard Web protocol

• Usually the data is in the form of JSON or XML

• Web requests have two main components

• Header - Describes the message

• The header consists of simple concise text lines of Keyword: Value and primarily defines content size, type, source and

destination

• Body - Contains the message

BRIDGING THE PAST AND THE FUTURE

• Check the price of an item

• Place an order for a product

• Update contact information

• Check the weather

WORKING WITH WEB SERVICES

• The processing of Web requests begins with a URL

• http://target-system-name/target...?parameters

• Two basic types of requests

• GET - Requests the contents of a target from the server

• POST - Sends some data (i.e. a form) to a specific target on the server

BRIDGING THE PAST AND THE FUTURE

WORKING WITH WEB SERVICES

• PxPlus provides a utility for submitting a request with data and returning the result

 "*plus/web/request"

• Supports secure (https://) and unsecure (http://) requests

• Uses HTTP version 1.1 protocol

• Can force HTTP version 1.0 protocol by defining the global variable %web_request_http_ver$ as "1.0"

• By default, the user agent will be the same as if the request came from a Windows version of Google Chrome with

the version of PxPlus appended to it

• Can be overridden by including a user agent header in the extrahdrs$ argument

 extrahdr$="User-Agent: MyApp/1.00.0000"

• Default request is a GET if no post data is provided; otherwise, a POST is used

• Eight entry points for additional request types are available: GET, POST, DELETE, PUT, TRACE, OPTIONS, PATCH

and HEAD

• This utility also allows you to specify the content type, SSL certificate and additional headers

BRIDGING THE PAST AND THE FUTURE

WORKING WITH WEB SERVICES

BRIDGING THE PAST AND THE FUTURE

CALL "*plus/web/request", url$, postdata$, recvdata$, recvhdr$, mimetype$, certificate$, extrahdrs$, method$, timeout

Argument Description

url$ Specifies target server and if secure or non-secure

postdata$ Data to send to the server

recvdata$ String variable to receive response

recvhdr$ Header of response received

mimetype$ Optional content type of data

certificate$ Optional path of certificate, if needed

extrahdrs$ Optional additional headers to include on send

method$ HTTP request method

timeout Timeout value (if not provided, defaults to 15 seconds)

WORKING WITH WEB SERVICES

BRIDGING THE PAST AND THE FUTURE

Example - Web request getting current weather for Toronto

CALL "*plus/web/request","https://goweather.herokuapp.com/weather/toronto","", Resp$,Hdr$,"","","",30

dim load forecast${all}=resp$

msgbox "It is: "+forecast$["temperature"],"Weather"

PAYPAL AND SALESFORCE EXAMPLES

PAYPAL AND SALESFORCE EXAMPLES

• Example objects are included to provide help with developing your own interfaces to REST-based Web services

• PayPal® (*obj/example/paypal/api)

• Salesforce® (*obj/example/salesforce/api)

• The example code can be used as a reference, or it can be copied and tailored to your specific needs

• Important Note:

• These examples are provided only to serve as a guide when developing your own REST interfaces and are not

supported by PxPlus since the PayPal® and Salesforce® APIs may be subject to change without notice

BRIDGING THE PAST AND THE FUTURE

https://manual.pvxplus.com/page/utilities/restexamples.htm#paypal
https://manual.pvxplus.com/page/utilities/restexamples.htm#salesforce

PAYPAL AND SALESFORCE EXAMPLES

PayPal® Example Object

• Handles authentication with PayPal® and allows you to send and receive money using PayPal®

• This object currently points to the PayPal® sandbox API for testing but can be easily modified to point to the live

PayPal® API once testing is done

• Before you can interface with PayPal® from PxPlus, a Client ID and Client Secret must be obtained from PayPal®

• To do this, first create a PayPal® developer account and then follow the instructions provided at this Web site:

https://developer.paypal.com/docs/api-basics/manage-apps/

• The PayPal® object runs an EZWeb server on the port specified in the constructor

• The EZWeb server is used for handling PayPal® order payment call-backs

• If an order payment is completed, the HTML page *obj/example/paypal/paycomplete.htm will be loaded

• If the order payment is cancelled, the HTML page *obj/example/paypal/paycancel.htm will be loaded

• Currently, the callback HTML pages are simply text stating whether the payment was completed or cancelled

BRIDGING THE PAST AND THE FUTURE

https://developer.paypal.com/docs/api-basics/manage-apps/

PAYPAL AND SALESFORCE EXAMPLES

PayPal® Example Object

• To instantiate the PayPal® object using the handle paypal (where paypal could be any numeric variable), enter the

following command:

 paypal=NEW("*obj/example/paypal/api", clientID$, clientSecret$, ezPort)

• No need to login to a PayPal® account on object instantiation

BRIDGING THE PAST AND THE FUTURE

PAYPAL AND SALESFORCE EXAMPLES

Items Object

• PxPlus has also provided the Items object used by the PayPal object

• Purpose of the Items object is to create orders and invoices

• Use this object to add all the items to the order/invoice and set the tax and shipping cost

• It will automatically calculate the sub-total and total

• To instantiate the Items object using the handle items (where items could be any numeric variable), enter the

following command:

 items=NEW("*obj/example/paypal/items")

BRIDGING THE PAST AND THE FUTURE

PAYPAL AND SALESFORCE EXAMPLES

BRIDGING THE PAST AND THE FUTURE

clientID$="xxx"

clientSecret$="xxx"

listenPort=8080

paypal=new("*obj/example/paypal/api",clientID$,clientSecret$,listenPort)

items=new("*obj/example/paypal/items")

items'TaxPercentage=13

items'ShippingCost=11

items'AddItem("CPU",459.49)

items'AddItem("Memory",112.99)

orderId$=paypal'NewOrder$(items)

input "Press any key to continue after paying the order",*;print ""

 if paypal'CaptureOrder(orderId$)=1 \

 then print "Captured payment" \

 else msgbox "Failed to capture payment","Error"

drop object items

drop object paypal

PAYPAL AND SALESFORCE EXAMPLES

BRIDGING THE PAST AND THE FUTURE

PAYPAL AND SALESFORCE EXAMPLES

Salesforce® Example Object

• Handles authentication with Salesforce® and allows you to work with Salesforce® Accounts and Opportunities, as

well as perform a Salesforce® query

• Before you can interface with Salesforce® from PxPlus, a Client ID and Client Secret must be obtained from

Salesforce®

• To do this, first create a Salesforce® developer account, and then follow the instructions provided at both of

these Web sites:

https://help.salesforce.com/articleView?id=connected_app_create_basics.htm&type=5

https://help.salesforce.com/articleView?id=connected_app_create_api_integration.htm&type=5

BRIDGING THE PAST AND THE FUTURE

https://help.salesforce.com/articleView?id=connected_app_create_basics.htm&type=5
https://help.salesforce.com/articleView?id=connected_app_create_api_integration.htm&type=5

PAYPAL AND SALESFORCE EXAMPLES

Salesforce® Example Object

• To instantiate the Salesforce® object using the handle salesforce (where salesforce could be any numeric variable),

enter the following command:

 Salesforce=NEW("*obj/example/salesforce/api", clientId$, clientSecret$[, refreshToken$])

• During object instantiation, the user is asked to select and login to a Salesforce® account via the default Web

browser

• When this process is completed, the Login() method must be run to complete the login to Salesforce®

• The Refresh token can optionally be used to avoid having to select a Salesforce® account and login more than once

• Once logged in to Salesforce®, the RefreshToken$ property can be accessed

• The next time the Salesforce® object is instantiated, just include the saved Refresh token, and it will be logged

into the same Salesforce® account automatically

• The login lasts for 15 minutes by default. After that, you need to call Login() again; otherwise, the methods will fail

BRIDGING THE PAST AND THE FUTURE

PAYPAL AND SALESFORCE EXAMPLES

Account Object

• Used to create, read and update Salesforce® account

• Only includes a subset of the account fields and can be modified by adding or removing fields as needed for your

own application (Required field: Name$)

• To instantiate the Account object using the handle account (where account could be any numeric variable), enter the

following command:

 account=NEW("*obj/example/salesforce/account")

BRIDGING THE PAST AND THE FUTURE

PAYPAL AND SALESFORCE EXAMPLES

Opportunity Object

• Used to create, read and update Salesforce® opportunities

• Only includes a subset of the opportunity fields and can be modified by adding or removing fields as needed for

your own application (Required fields: CloseDate$, Name$, StageName$)

• To instantiate the Opportunity object using the handle opportunity (where opportunity could be any numeric

variable), enter the following command:

 opportunity=NEW("*obj/example/salesforce/opportunity")

BRIDGING THE PAST AND THE FUTURE

PAYPAL AND SALESFORCE EXAMPLES

BRIDGING THE PAST AND THE FUTURE

clientID$="xxx"

clientSecret$="xxx"

salesforce=new("*obj/example/salesforce/api",clientID$,clientSecret$)

input "Press any key to continue after logging into Salesforce account and allowing PxPlus access:",*;print ""

salesforce'Login()

newOpportunity=new("*obj/example/salesforce/opportunity")

newOpportunity'Name$="Example Corp Server Upgrades"

newOpportunity'AccountId$="0014x00000CMnElAAL"

newOpportunity'Description$="They need to buy 50 new servers to upgrade old ones."

newOpportunity'Amount=30000

newOpportunity'CloseDate$="2024-12-30"

newOpportunity'StageName$="Prospecting"

newOpportunityId$=salesforce'NewOpportunity$(newOpportunity)

drop object newOpportunity

drop object salesforce

PAYPAL AND SALESFORCE EXAMPLES

BRIDGING THE PAST AND THE FUTURE

	Slide 1: Working with External Tools
	Slide 2: Agenda
	Slide 3: Visual Studio Code Extension
	Slide 4: Visual Studio Code Extension
	Slide 5: Visual Studio Code Extension
	Slide 6: Visual Studio Code Extension
	Slide 7: Visual Studio Code Extension
	Slide 8: Visual Studio Code Extension
	Slide 9: Visual Studio Code Extension
	Slide 10: Visual Studio Code Extension
	Slide 11: Visual Studio Code Extension
	Slide 12: Visual Studio Code Extension
	Slide 13: Visual Studio Code Extension
	Slide 14: Visual Studio Code Extension
	Slide 15: Visual Studio Code Extension
	Slide 16: Visual Studio Code Extension
	Slide 17: Visual Studio Code Extension
	Slide 18: Visual Studio Code Extension
	Slide 19: Visual Studio Code Extension
	Slide 20: Visual Studio Code Extension
	Slide 21: Visual Studio Code Extension
	Slide 22: Visual Studio Code Extension
	Slide 23: Google Workspace Objects
	Slide 24: Google Workspace Objects
	Slide 25: Google Workspace Objects
	Slide 26: Google Workspace Objects
	Slide 27: Google Workspace Objects
	Slide 28: Google Workspace Objects
	Slide 29: Google Workspace Objects
	Slide 30: Google Workspace Objects
	Slide 31: Google Workspace Objects
	Slide 32: Google Workspace Objects
	Slide 33: Google Workspace Objects
	Slide 34: Google Workspace Objects
	Slide 35: Google Workspace Objects
	Slide 36: Google Workspace Objects
	Slide 37: Google Workspace Objects
	Slide 38: Google Workspace Objects
	Slide 39: Google Workspace Objects
	Slide 40: Google Workspace Objects
	Slide 41: Google Workspace Objects
	Slide 42: Google Workspace Objects
	Slide 43: Google Workspace Objects
	Slide 44: Working with Web Services
	Slide 45: Working with Web Services
	Slide 46: Working with Web Services
	Slide 47: Working with Web Services
	Slide 48: Working with Web Services
	Slide 49: Working with Web Services
	Slide 50: PayPal AND SALESFORCE Examples
	Slide 51: Paypal AND SALESFORCE Examples
	Slide 52: Paypal AND SALESFORCE Examples
	Slide 53: Paypal AND SALESFORCE Examples
	Slide 54: Paypal AND SALESFORCE Examples
	Slide 55: Paypal AND SALESFORCE Examples
	Slide 56: Paypal AND SALESFORCE Examples
	Slide 57: Paypal AND SALESFORCE Examples
	Slide 58: Paypal AND SALESFORCE Examples
	Slide 59: Paypal AND SALESFORCE Examples
	Slide 60: Paypal AND SALESFORCE Examples
	Slide 61: Paypal AND SALESFORCE Examples
	Slide 62: Paypal AND SALESFORCE Examples

