
WORKING WITH WEB SERVICES

WORKING WITH WEB SERVICES

• Examples of Web Services

• A Web Service exchanges information between applications using the standard Web protocol

• Usually the data is in the form of JSON or XML

• Web requests have two main components

• Header - Describes the message

• The header consists of simple concise text lines of Keyword: Value and primarily defines content size, type, source and

destination

• Body - Contains the message

BRIDGING THE PAST AND THE FUTURE

• Check the price of an item

• Place an order for a product

• Update contact information

• Check the weather

WORKING WITH WEB SERVICES

• The processing of Web requests begins with a URL

• http://target-system-name/target...?parameters

• Two basic types of requests

• GET - Requests the contents of a target from the server

• POST - Sends some data (i.e. a form) to a specific target on the server

BRIDGING THE PAST AND THE FUTURE

WORKING WITH WEB SERVICES

• PxPlus provides a utility for submitting a request with data and returning the result

 "*plus/web/request"

• Supports secure (https://) and unsecure (http://) requests

• Uses HTTP version 1.1 protocol

• Can force HTTP version 1.0 protocol by defining the global variable %web_request_http_ver$ as "1.0"

• By default, the user agent will be the same as if the request came from a Windows version of Google Chrome with

the version of PxPlus appended to it

• Can be overridden by including a user agent header in the extrahdrs$ argument

 extrahdr$="User-Agent: MyApp/1.00.0000"

• Default request is a GET if no post data is provided; otherwise, a POST is used

• Eight entry points for additional request types are available: GET, POST, DELETE, PUT, TRACE, OPTIONS, PATCH

and HEAD

• This utility also allows you to specify the content type, SSL certificate and additional headers

BRIDGING THE PAST AND THE FUTURE

WORKING WITH WEB SERVICES

BRIDGING THE PAST AND THE FUTURE

CALL "*plus/web/request", url$, postdata$, recvdata$, recvhdr$, mimetype$, certificate$, extrahdrs$, method$, timeout

Argument Description

url$ Specifies target server and if secure or non-secure

postdata$ Data to send to the server

recvdata$ String variable to receive response

recvhdr$ Header of response received

mimetype$ Optional content type of data

certificate$ Optional path of certificate, if needed

extrahdrs$ Optional additional headers to include on send

method$ HTTP request method

timeout Timeout value (if not provided, defaults to 15 seconds)

WORKING WITH WEB SERVICES

BRIDGING THE PAST AND THE FUTURE

Example - Web request getting current weather for Toronto

CALL "*plus/web/request","https://goweather.herokuapp.com/weather/toronto","", Resp$,Hdr$,"","","",30

dim load forecast${all}=resp$

msgbox "It is: "+forecast$["temperature"],"Weather"

	Slide 44: Working with Web Services
	Slide 45: Working with Web Services
	Slide 46: Working with Web Services
	Slide 47: Working with Web Services
	Slide 48: Working with Web Services
	Slide 49: Working with Web Services

