T FE G ) AN S S A O 2R P M S

T — e




WORKING WITH WEB SERVICES

* Examples of Web Services

* Check the price of an item * Update contact information
* Place an order for a product * Check the weather

* A Web Service exchanges information between applications using the standard Web protocol
* Usually the data is in the form of JSON or XML
* Web requests have two main components

* Header - Describes the message

* The header consists of simple concise text lines of Keyword: Value and primarily defines content size, type, source and
destination

* Body - Contains the message

BRIDGING THE PAST AND THE FUTURE



WORKING WITH WEB SERVICES

* The processing of Web requests begins with a URL
* http://target-system-name /target...2parameters
* Two basic types of requests
* GET - Requests the contents of a target from the server

* POST - Sends some data (i.e. a form) to a specific target on the server

BRIDGING THE PAST AND THE FUTURE



WORKING WITH WEB SERVICES

PxPlus provides a utility for submitting a request with data and returning the result
"*plus/web/request"
Supports secure (https://) and unsecure (hitp://) requests
Uses HTTP version 1.1 protocol
* Can force HTTP version 1.0 protocol by defining the global variable %web_request_http_ver$ as "1.0"

By default, the user agent will be the same as if the request came from a Windows version of Google Chrome with
the version of PxPlus appended to it

* Can be overridden by including a user agent header in the extrahdrs$ argument
extrahdr$="User-Agent: MyApp/1.00.0000"

Default request is a GET if no post data is provided; otherwise, a POST is used

Eight entry points for additional request types are available: GET, POST, DELETE, PUT, TRACE, OPTIONS, PATCH
and HEAD

This utility also allows you to specify the content type, SSL certificate and additional headers

BRIDGING THE PAST AND THE FUTURE



WORKING WITH WEB SERVICES

CALL "*plus/web /request”, url$, postdata$, recvdata$, recvhdr$, mimetype$, certificate$, extrahdrs$, method$, timeout

Argument Description

url$ Specifies target server and if secure or non-secure
postdata$ Data to send to the server

recvdata$ String variable to receive response

recvhdr$ Header of response received

mimetype$ Optional content type of data

certificate$ Optional path of certificate, if needed

extrahdrs$ Optional additional headers to include on send
method$ HTTP request method

timeout Timeout value (if not provided, defaults to 15 seconds)

BRIDGING THE PAST AND THE FUTURE



WORKING WITH WEB SERVICES

Example - Web request getting current weather for Toronto

CALL "*plus/web /request”,"https: / /goweather.herokuapp.com /weather /toronto","", Resp$,Hdr$,"","","",30

dim load forecast${all}=resp $
msgbox "It is: "+forecast$["temperature”],"Weather"

Weather X ‘

Itis: =24 °C

BRIDGING THE PAST AND THE FUTURE



	Slide 44: Working with Web Services
	Slide 45: Working with Web Services
	Slide 46: Working with Web Services
	Slide 47: Working with Web Services
	Slide 48: Working with Web Services
	Slide 49: Working with Web Services

