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• Examples of Web Services

• A Web Service exchanges information between applications using the standard Web protocol

• Usually the data is in the form of JSON or XML

• Web requests have two main components

• Header - Describes the message

• The header consists of simple concise text lines of Keyword: Value and primarily defines content size, type, source and 

destination

• Body - Contains the message 
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• Check the price of an item

• Place an order for a product

• Update contact information

• Check the weather
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• The processing of Web requests begins with a URL

• http://target-system-name/target...?parameters

• Two basic types of requests

• GET   - Requests the contents of a target from the server 

• POST - Sends some data (i.e. a form) to a specific target on the server
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• PxPlus provides a utility for submitting a request with data and returning the result

     "*plus/web/request"

• Supports secure (https://) and unsecure (http://) requests

• Uses HTTP version 1.1 protocol

• Can force HTTP version 1.0 protocol by defining the global variable %web_request_http_ver$ as "1.0"

• By default, the user agent will be the same as if the request came from a Windows version of Google Chrome with 

the version of PxPlus appended to it

• Can be overridden by including a user agent header in the extrahdrs$ argument

     extrahdr$="User-Agent: MyApp/1.00.0000"

• Default request is a GET if no post data is provided; otherwise, a POST is used

• Eight entry points for additional request types are available: GET, POST, DELETE, PUT, TRACE, OPTIONS, PATCH 

and HEAD

• This utility also allows you to specify the content type, SSL certificate and additional headers
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CALL "*plus/web/request", url$, postdata$, recvdata$, recvhdr$, mimetype$, certificate$, extrahdrs$, method$, timeout

Argument Description

url$ Specifies target server and if secure or non-secure

postdata$ Data to send to the server

recvdata$ String variable to receive response

recvhdr$ Header of response received

mimetype$ Optional content type of data

certificate$ Optional path of certificate, if needed

extrahdrs$ Optional additional headers to include on send

method$ HTTP request method

timeout Timeout value (if not provided, defaults to 15 seconds)
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Example - Web request getting current weather for Toronto

CALL "*plus/web/request","https://goweather.herokuapp.com/weather/toronto","", Resp$,Hdr$,"","","",30

dim load forecast${all}=resp$

msgbox "It is: "+forecast$["temperature"],"Weather"
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